Optimal top electrodes for inverted polymer solar cells.
نویسندگان
چکیده
Although polymer solar cells (PSCs) have received a tremendous amount of attention in recent years, a number of criteria must be met in order for them to be suitable as practical and commercially feasible power sources, including high performance, good air stability and inexpensive manufacturing. In this contribution, we determine the optimal top electrode for practical PSC fabrication by investigating the influence of the electrode material on the optical properties and performance of PSC devices. The optical properties of eight metals were considered, out of which three metal electrodes (aluminum (Al), silver (Ag), gold (Au)) with the best optical properties were used to prepare inverted PSC devices comprising a blended polymer thieno[3,4-b]thiophene/benzodithiophene (PTB7) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM). Among the photovoltaic parameters, the short circuit current density (JSC) was most strongly affected by the optical properties of the top electrode. In the results of the experiment, the J(SC) of the Al and Ag electrode devices was found to be approximately 13% (13.4 → 15.1 mA cm(-2)) higher than the Au electrode device due to the significant parasitic absorption of light by Au at wavelengths below 600 nm. In contrast, Al and Ag electrodes have high reflectance throughout the visible spectrum, which leads to high J(SC). Ag electrodes have relatively good stability to ambient exposure, maintaining over 96% of the original efficiency after 170 hours; this stability is comparable to Au. These data lead to the conclusion that Ag is the optimal top electrode material for use in inverted devices.
منابع مشابه
Performance analysis of different top metal electrodes in inverted polymer solar cells
In recent years, since the introduction of bulk heterojunction concept in an organic solar cell, the efficiency is increased to ∼6%. The benefits of bulk heterojunction (BHJ) organic solar cells are drawing interest for applications in next-generation solar cells. In this study, we analyze the optimal top electrode for practical polymer solar cells (PSC) fabrication by utilizing the optical pro...
متن کاملEfficient inverted polymer solar cells
We investigate the effect of interfacial buffer layers—vanadium oxide V2O5 and cesium carbonate Cs2CO3 —on the performance of polymer solar cells based on regioregular poly3-hexylthiophene and 6,6 -phenyl C60 butyric acid methyl ester blend. The polarity of solar cells can be controlled by the relative positions of these two interfacial layers. Efficient inverted polymer solar cells were fabric...
متن کاملبهبود چگالی جریان و افزایش کارایی سلول خورشیدی پلیمری P3HT:PCBM با استفاده از نانومیله اکسید روی
Hybrid solar cells combine organic and inorganic materials with the aim of utilizing the low cost cell production of organic photovoltaics (OPV) as well as obtaining other advantages, such as tuneable absorption spectra, from the inorganic component. Whilst hybrid solar cells have the potential to achieve high power conversion efficiencies (PCE), currently obtained efficiencies are quite low. T...
متن کاملInvestigation into the effect of post-annealing on inverted polymer solar cells
The work-function of indium tin oxide (ITO) electrodes was tuned with an interfacial dipole layer (WPFoxy-F) to reverse the polarity in polymer solar cells (PSCs) with an inverted structure. The photoactive layer was based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Silver (Ag) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) we...
متن کاملEfficient inverted polymer solar cells based on surface modified FTO transparent electrodes
Nano-textured transparent electrodes are commonly used to receive higher light absorption in inverted polymer solar cells (IPSC). However, the performance of the device is often restricted by the highly rough morphology of the textured transparent electrode. In this work, a Polyvinylpyrrolidone (PVP) interlayer was inserted as a surface modifier in IPSCs based on a fluorine-doped SnO2 electrode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2015